
Modal optimization for least square
controller in COMPASS

Approach

This section summarizes the modal optimization approach for AO system command law described by
E.Gendron & P.Léna, Modal control optimization, Astronomical adaptive optics (1994).

The phase of the instantaneous electric field over the pupil can decomposed over some basis
functions :

In COMPASS, the modes are considered as Karhunen-Loeve basis modes, but any other basis of
modes may be of interest.
Then, if we note z the vector of that described the input turbulent wavefront, we can write the
wavefront z' corrected by the OA loop as :

with : and the transfer functions of the open-loop and the system respectively
 a diagonal filtering matrix that will be applied in addition to the control matrix
 is the interaction matrix
 is the noise vector on centroid position

Finally, by assuming that the aliasing term can be neglected in low flux regime, we can write each
component of the vector z as :

And since the noise is not correlated with the signal, the variance is :

 (Equation 1)

Where and stand for the squared modulus of and which are the correction
transfer function and the transfer function between the white noise in input and the noise actually sent
to the active component.
This equation shows that we can minimize the residual phase errors by a proper choice of the gain
and that is the goal of the modal control optimization.

Algorithm

Overall view

Here is the algorithm implemented in COMPASS and described step by step :

• Recording samples of open-loop measurements : in the RTC initialization, we runs a loop with

turbulence, sensors imaging and centroiding in order to obtain samples of open-loop
measurements. The number of recorded samples is set by the user in the parameter file with
y_controller.nrec

• Computing the modes to volts matrix M2V : the pzt mirrors are decomposed on a Karhunen-

Loeve basis

• Computing slopes to modes matrix S2M :

It's important here to do the inversion without filtering modes. The matrix M2V has to be
builded with a correct number of modes that allows to do this inversion. The user chooses the
number of modes used with the parameter y_controller.nmodes

• Computing transfer functions : we compute for i=1 to i=y_controller.ngain and

• Computing gain matrix G : computing Equation 1 and choosing that minimizes the result

• Computing command matrix CMAT :

• Refreshing gains : during the loop, each closed-loop slope is reconstructed with a POLC

equation and stored. When y_controller.nrec slopes are stored, we restart from step 5 to refresh
modal gains in G.

M2V computation

The M2V matrix is computed by double diagonalization process.

First, the statistic covariance matrix C of the phase on the actuators is computed as :

where is the distance between the actuator i and the actuator j
The piston mode is filtered from this matrix thanks to a filter matrix F (N = number of actuators) :

and
Then, the geometric covariance matrix of the DM is computed as :

where is the influence functions matrix of the DM.
From those two matrix, the M2V matrix can be computed thanks to double diagonalization process :

• Diagonalize :

• Compute M :

• Compute :

• Diagonalize :

• Compute M2V :

Transfer functions computation

The transfer functions are computed analytically from the simulated system :

with

 and

This computation is done for each and results are stored in a matrix H.

Modal gains computation

First, the decomposition of the recorded open-loop slopes s on the K-L basis is computed :

Each vector m is then stored in a buffer (Nslope x Nmodes) and the PSD along each mode is computed:

Finally, Equation (1) is computed for each gain and the optimum gain for the mode i is the one that
produces the minimum result.

POLC equation

After y_controllers.nrec iterations in the AO loop, the modal control optimization will be refresh from
open-loop slopes reconstructed from the closed-loop ones thanks to a Pseudo Open-Loop Control
equation.

 If stands for the estimation of the open-loop slope at iteration k, for the closed-loop slope ,
 for the command applied to the DM and the global delay in the loop, the estimation can be

written as :

Those slopes are stored in a buffer Nslopes x nrec : when it's full, the modal control optimization is
refreshed.

Implementation details

New parameters in Yorick controller structure

New attributes in sutra_controller_ls

Those buffers are used during the AO loop, so they are declared as attributes of sutra_controller_ls but
allocated only if modal ooptimization is used :

The following attributes have been added to sutra_controller_ls also :

 carma_obj<float> *d_M2V; // Modes to Volts matrix (nactu x nmodes)

 carma_obj<float> *d_S2M; // Slopes to Modes matrix (nmodes x nslopes)

 carma_obj<float> *d_slpol; // Open-loop measurements buffer, recorded and loaded from Yorick
(nslopes x nrec)

 carma_obj<float> *d_Hcor; // Transfer function (ngain x nrec/2)

 carma_obj<float> *d_com1; // Command k-1 for POLC (nactu)

 carma_obj<float> *d_com2; // Command k-2 for POLC (nactu)

 carma_obj<float> *d_compbuff; // Buffer for POLC computation (nactu)

 carma_obj<float> *d_compbuff2; // Buffer for POLC computation (nslopes)

struct controller_struct
{
 [..]
 int modopti; // Flag for modal optimization
 int nrec; // Number of sample of open loop slopes for modal optimization computation
 int nmodes; // Number of modes for M2V matrix (modal optimization)
 float gmin; // Minimum gain for modal optimization
 float gmax; // Maximum gain for modal optimization
 int ngain; // Number of tested gains
};

New functions in sutra_controller_ls

New functions in sutra_dm

 int is_modopti; // Flag for using modal optimization

 int nrec; // Number of recorded open slopes measurements

 int nmodes; //Number of modes

 float gmin; // Gain min

 float gmax; // Gain max

 int ngain; // Number of tested gains between gmin and gmax

 float Fs; // Sampling frequency

 int cpt_rec; // Counter for modal gains refresh

int build_cmat_modopti(); //Compute the command matrix with modal optimization
int init_modalOpti(int nmodes, int nrec, float *M2V, float gmin, float gmax, int ngain,

 float Fs); // Initialize arrays & compute S2M

 int loadOpenLoopSlp(float *ol_slopes); // load open-loop slopes from Yorick

 int modalControlOptimization(); // Compute optimum modal gains

 int compute_Hcor(); // Compute transfer functions

int get_IF_sparse(carma_sparse_obj<T> *&d_IFsparse, int *indx_pup, long nb_pts, float
ampli, int puponly); // Build the IF sparse matrix

template<class T>

 int do_geomatFromSparse(T *d_geocov, carma_sparse_obj<T> *d_Ifsparse); // Compute
the geometric covariance matrix from IF sparse

 int DDiago(carma_obj<float> *d_statcov, carma_obj<float>*d_geocov); // Double diago

 int compute_KLbasis(float *xpos, float *ypos, int *indx, long dim, float norm, float ampli);
// Compute M2V matrix

 int piston_filt(carma_obj <float> *d_statcov); // Filter the piston mode

Optimizations

• All matrix-vector or matrix-matrix multiplications are done using cuBLAS Library

• Inversion matrix is performed with MAGMA Library

• The influence functions matrix of the DM, which is required to compute the geometric

covariance matrix usefull to obtain the M2V matrix, could be very large. In ELT cases for
examples, it could be a (500,000 x 5,000) matrix, ie a 10 GB matrix. Knowing this matrix is
very sparse, the cuSPARSE Libray is used to store the matrix in CSR format and to perform the
matrix-matrix multiplication.

Results
See benchmark document

References
E.Gendron & P.Léna, Modal control optimization, Astronomical adaptive optics (1994).

E.Gendron, Optimisation de la commande modale en optique adaptative : application à l'astronomie,
Thesis (1995)

	Approach
	Algorithm
	Overall view
	M2V computation
	Transfer functions computation
	Modal gains computation
	POLC equation

	Implementation details
	New parameters in Yorick controller structure
	New attributes in sutra_controller_ls
	New functions in sutra_controller_ls
	New functions in sutra_dm
	Optimizations

	Results
	References

