

Convective dynamos: symmetries and modulation

Raphaël Raynaud

Collaborator: Steven M. Tobias (University of Leeds)

School of Astronomy - IPM (Tehran)

LESIA Meudon December 15, 2016

The Sun's magnetic field	Modelling 00000	Results 000000	Discussion 00000	Conclusion
Table of contents				

- The Sun's magnetic field
 - Characteristic features
- 2 Modell
 - Set up
 - Governing equations
- 3 Result
 - Magnetic field topology
 - Modulations of the magnetic activity

Discussion

- Mean-field and ODE models
- Solar observations

5 Conclusion

The Sun's magnetic field ●0000	Modelling 00000	Results 000000	Discussion 00000	Conclusion
Characteristic features				
Overview				

Hale (1908): "On the probable existence of a magnetic field in sun-spots"

Coronal loops

http://trace.lmsal.com

Internal structure of the Sun

http://solarscience.msfc.nasa.gov

The 22 year solar cy	cle			
Characteristic features				
The Sun's magnetic field o●ooo	Modelling	Results 000000	Discussion 00000	Conclusion

Time evolution of B_r averaged in longitude at the surface of the Sun

Hathaway, 2015, "The Solar Cycle", ArXiv e-prints

The Sun's magnetic field	Modelling 00000	Results 000000	Discussion 00000	Conclusion
Characteristic features				

The Maunder Minimum (1645-1715)

Charbonneau, 2013, Solar and Stellar Dynamos, Saas-Fee Advanced Course, 39, Springer-Verlag

The Sun's magnetic field	Modelling	Results	Discussion	Conclusion
000●0	00000	000000	00000	
Characteristic features				

How to go further back in time ?

Steinhilber et al., 2012, Proc. Natl. Acad. Sci. USA, 109

The Sun's magnetic field	Modelling	Results	Discussion	Conclusion
0000●	00000	000000	00000	
Characteristic factures				

The variability of solar activity over millennia

Time series of the group sunspot number (red) and pseudo-SSN time series constructed from cosmogenic isotopes

27 grand minima identified in the past 11 000 yr separated by aperiodic intervals of 200 yr

Charbonneau, 2014, Annu. Rev. Astron. Astrophys., 52:251–90 Usoskin, 2013, Living. Rev. Solar. Phys., 10

The Sun's magnetic field	Modelling	Results 000000	Discussion 00000	Conclusion

Table of contents

- The Sun's magnetic field
 Characteristic features
- 2

Modelling

- Set up
- Governing equations
- 3 Result
 - Magnetic field topology
 - Modulations of the magnetic activity

Discussion

- Mean-field and ODE models
- Solar observations

5 Conclusion

Modelling the fluid	d flow			
Set up				
The Sun's magnetic field	Modelling ●oooo	Results 000000	Discussion 00000	Conclusion

The Convective Approximations

Asymptotic limits of the fully compressible system that

- retain the essential physics with a minimum complexity
- filter out sound waves

The Boussinesq Approximation

 $\nabla \cdot (\mathbf{u}) = 0$

The Anelastic Approximation

$$\nabla \cdot (\overline{\rho_a} \, \mathbf{u}) = 0$$

thin layer approximation

$$L \ll H_p = \left|\frac{d\ln p}{dz}\right|^{-1}$$

large stratified system the lower part of which is compressed by the overlying material

The Sun's magnetic field	Modelling ⊙●○○○	Results 000000	Discussion 00000	Conclusion
Set up				
The reference sta	te			

The reference state must be in quasiequilibrium:

Mechanical quasiequilibriumhydrostatic balance $-\nabla P_a + \rho_a \mathbf{g} = 0$ (1)

Thermal quasiequilibrium "well mixed" state $\nabla S_a = 0$ (2)

The Sun's magnetic field	Modelling ○○●○○	Results 000000	Discussion 00000	Conclusion
Governing equations				
Dimensionless anela	stic system			

$$T_a = \zeta(r), \qquad \rho_a = \zeta^n, \qquad P_a = \zeta^{n+1}$$

The Sun's magnetic field	Modelling ○○●○○	Results 000000	Discussion 00000	Conclusion
Governing equations				
Dimensionless anelastic system				

$$T_a = \zeta(r), \qquad \rho_a = \zeta^n, \qquad P_a = \zeta^{n+1}$$

$$0 = \nabla \cdot \mathbf{B}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \nabla^2 \mathbf{B}$$

The Sun's magnetic field	Modelling ○○●○○	Results 000000	Discussion 00000	Conclusion
Governing equations	nelastic system	n		

$$T_a = \zeta(r), \qquad \rho_a = \zeta^n, \qquad P_a = \zeta^{n+1}$$

$$0 = \nabla \cdot \mathbf{B}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \nabla^2 \mathbf{B}$$

$$\mathbf{0} = \mathbf{\nabla} \cdot (\boldsymbol{\varrho}_{a} \mathbf{v})$$

The Sun's magnetic field	Modelling ○○●○○	Results 000000	Discussion 00000	Conclusion
Governing equations				
Dimensionless an	1			

$$T_a = \zeta(r), \qquad \rho_a = \zeta^n, \qquad P_a = \zeta^{n+1}$$

$$0 = \nabla \cdot \mathbf{B}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \nabla^{2} \mathbf{B}$$

$$0 = \nabla \cdot (\rho_{a} \mathbf{v})$$

$$\frac{D \mathbf{v}}{D t} = -\frac{Pm}{E} \nabla \frac{P'}{\rho_{a}} + \frac{Pm^{2}}{Pr} Ra \frac{s}{r^{2}} \mathbf{e}_{r} - \frac{2Pm}{E} \mathbf{e}_{z} \times \mathbf{v} + \mathbf{F}$$

$$+ \frac{Pm}{E \rho_{a}} (\nabla \times \mathbf{B}) \times \mathbf{B}$$

1/28

The Sun's magnetic field	Modelling	Results 000000	Discussion 00000	Conclusion
Governing equations				
Dimensionless ar	nelastic system	ı		

$$T_a = \zeta(r), \qquad \rho_a = \zeta^n, \qquad P_a = \zeta^{n+1}$$

$$0 = \nabla \cdot \mathbf{B}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \nabla^{2} \mathbf{B}$$

$$0 = \nabla \cdot (\rho_{a} \mathbf{v})$$

$$\frac{D \mathbf{v}}{D t} = -\frac{P m}{E} \nabla \frac{P'}{\rho_{a}} + \frac{P m^{2}}{P r} R a \frac{s}{r^{2}} \mathbf{e}_{r} - \frac{2P m}{E} \mathbf{e}_{z} \times \mathbf{v} + \mathbf{F}_{v}$$

$$+ \frac{P m}{E \rho_{a}} (\nabla \times \mathbf{B}) \times \mathbf{B}$$

$$\frac{D s}{D t} = (\rho_{a} T_{a})^{-1} \frac{P m}{P r} \nabla \cdot (\rho_{a} T_{a} \nabla s) + \frac{D i}{T_{a}} [(E \rho_{a})^{-1} (\nabla \times \mathbf{B})^{2} + Q_{v}]$$

 The Sun's magnetic field
 Modelling
 Results
 Discussion
 Conclusion

 00000
 00000
 00000
 00000
 00000
 00000

A simplified model for stellar convection zone

King et al., 2010, GGG, Q06016

Set up

- perfect gas in a rotating spherical shell with
 - ★ constant kinematic viscosity $\nu = \mu/\rho$
 - turbulent entropy diffusivity κ
 - \star constant magnetic diffusivity η
- adiabatic reference state
- central mass distribution

Boundary conditions

- stress-free b. c. for the velocity field
- insulating b. c. for the magnetic field
- fixed entropy difference ΔS

The Sun's magnetic field	Modelling ○○○○●	Results 000000	Discussion 00000	Conclusion
Governing equations				
Parameter study				

Methods

- anelastic system integrated in time with a pseudo-spectral code
- focus on the interactions of modes with different

equatorial symmetry $\begin{cases} E_b^S = \text{symmetric magnetic energy} \\ E_b^A = \text{antisymmetric magnetic energy} \end{cases}$

Control parameters				
Rayleigh number	Ra	<u>GMdΔS</u> νκc _p	$\sim 10^{6}$	$O(10^{20})$
Prandtl number	Pr	ν/κ	1	$O(10^{-6})$
magnetic Prandtl number	Рm	ν/η	1	$O(10^{-1})$
Ekman number	Ε	$\nu/(\Omega d^2)$	10^{-4}	$O(10^{-15})$
aspect ratio	χ	r _i /r _o	0.35	0.7
polytropic index	п	$1/(\gamma - 1)$	2	
number of density scale heights	$N_{ ho}$	$\ln(\rho_i/\rho_o)$	0.5	$\mathcal{O}(10)$

The Sun's magnetic field	Modelling 00000	Results 000000	Discussion 00000	Conclusion

Table of contents

- The Sun's magnetic field
 - Characteristic features

2 Modelling

- Set up
- Governing equations
- 3

Results

- Magnetic field topology
- Modulations of the magnetic activity

Discussion

- Mean-field and ODE models
- Solar observations

5 Conclusion

The Sun's magnetic field	Modelling 00000	Results ●○○○○○	Discussion 00000	Conclusion
Magnetic field topology				

Dipolar versus oscillatory dynamos

The dynamo branches in the parameter space (*Ra*/*Ra*_c, *Pm*) Raynaud *et al.*, 2015, MNRAS, 448, 2055–2065

The Sun's magnetic field	Modelling 00000	Results ●○○○○○	Discussion 00000	Conclusion
Magnetic field topology				

Dipolar versus oscillatory dynamos

The dynamo branches in the parameter space (*Ra*/*Ra*_c, *Pm*) Raynaud *et al.*, 2015, MNRAS, 448, 2055–2065

The Sun's magnetic field	Modelling 00000	Results ○●○○○○	Discussion 00000	Conclusion
Modulations of the magnetic activity			Raynaud & Tobias,	2016, JFM, 799, R6
Parity modulation				

Phase portrait in the space (E_b^S, E_b^A, E_Z)

Type 1 modulation

- energy transfer between modes of different parity
- little change in the overall amplitude

Hemispherical localisation of the magnetic field

The Sun's magnetic field	Modelling 00000	Results ○oo●oo	Discussion 00000	Conclusion
Modulations of the magnetic activity			Raynaud & Tobias, 2016, J	FM, 799, R6

Chaotic emergence of grand minima

The Sun's magnetic field	Modelling 00000	Results ○oo●oo	Discussion 00000	Conclusion
Modulations of the magnetic activity			Raynaud & Tobias, 2016, J	FM, 799, R6

Chaotic emergence of grand minima

Type 2 modulation

- amplitude modulation via interaction with a large-scale velocity field
- no changes in symmetry

Phase portraits in the space (E_b^S, E_b^A, E_Z)

From Type 1 to Type 2 modulation

Phase portraits in the space (E_b^S, E_b^A, E_Z)

 $Ra = 1.65 \times 10^{6}$

The Sun's magnetic field	Modelling 00000	Results 000000	Discussion	Conclusion

Table of contents

- The Sun's magnetic field
 - Characteristic features

2 Modelling

- Set up
- Governing equations
- 3 Results
 - Magnetic field topology
 - Modulations of the magnetic activity

Discussion

- Mean-field and ODE models
- Solar observations

5 Conclusion

The Sun's magnetic field	Modelling 00000	Results 000000	Discussion ●○○○○	Conclusion
Mean-field and ODE models				

A generic dynamical behaviour

Modulations predicted by

- mean-field dynamo models
- low-order systems based on symmetry considerations

The Sun's magnetic field	Modelling	Results	Discussion ○●○○○	Conclusion
Solar observations				

Hints for parity interactions at work in the Sun

Sunspots at the end of the Maunder Minimum

The Sun's magnetic field	Modelling 00000	Results 000000	Discussion ○o●oo	Conclusion
Solar observations				

Hints for parity interactions at work in the Sun

Butterfly diagram (numerical model)

Raynaud & Tobias, 2016, JFM, 799, R6

Sunspots at the end of the Maunder Minimum

Arlt & Weiss, 2014, Space Sci. Rev., 186, 525

The Sun's magnetic field	Modelling 00000	Results 000000	Discussion ○oo●o	Conclusion
Solar observations				

Temporal variations of cosmic radiations

- PCA: combined normalized production rate of ¹⁰Be and ¹⁴C
- Φ : after correction for changes in the geomagnetic field

McCracken et al., 2013, Solar Phys., 286, 609 Weiss & Tobias, 2016, MNRAS, 456, 2654–2661

Temporal variations of cosmic radiations

- PCA: combined normalized production rate of ¹⁰Be and ¹⁴C
- Φ : after correction for changes in the geomagnetic field ۰

McCracken et al., 2013, Solar Phys., 286, 609 Weiss & Tobias, 2016, MNRAS, 456, 2654-2661 de Vries cycle

7

400

300

1.0 7000

6000

time

14

16

10

0.5

0.0

8

5000

4000

Time (y BP)

3000

2000

The Sun's magnetic field	Modelling 00000	Results 000000	Discussion 00000	Conclusion

Table of contents

- The Sun's magnetic field
 - Characteristic features

2 Modelling

- Set up
- Governing equations
- 3 Results
 - Magnetic field topology
 - Modulations of the magnetic activity

Discussion

- Mean-field and ODE models
- Solar observations

00000	00000	000000	00000	Conclusion
Conclusion				

Results

- 1st evidence for Type 1, Type 2 and "super-"modulation in 3D direct numerical simulations
- reminiscent of the variations of the solar activity
- parity interactions may govern the long term modulation of the solar dynamo

References

- Weiss & Tobias, 2016, MNRAS, 456, 2654–2661
- Raynaud & Tobias, 2016, JFM, 799, R6

https://cv.archives-ouvertes.fr/raphael-raynaud