
1

INTRODUCTION TO GIT
Sonny Lion (sonny.lion@obspm.fr)

Observatoire de Paris, LESIA

file:///home/slion/Documents/presentation/reveal_js/introduction_to_git/intro_to_git.html?print-pdf


2

GIT BASICS
So, what is Git in a nutshell? It is a powerful tool to manage version control
of your work.

Figure 1. Free, open-source and fast. What else?



3

WHY GIT?
The major difference between Git and any other VCS (Subversion and
friends included)

Figure 2. Storing data as changes to a base version of each file.

Git doesn’t think of or store its data this way.



4

SNAPSHOTS, NOT DIFFERENCES
Instead, Git thinks of its data more like a set of snapshots of a miniature
filesystem. Every time you commit, or save the state of your project in Git, it
basically takes a picture of what all your files look like at that moment and
stores a reference to that snapshot.

Figure 3. Storing data as snapshots of the project over time.



5

NEARLY EVERY OPERATION IS LOCAL
Most operations in Git only need local files and resources to operate

Git doesn’t need to go out to the
server to get the history and display it
for you.

This also means that there is very
little you can’t do if you’re offline or
off VPN.



GIT HAS INTEGRITY
Everything in Git is check-summed before it is stored and is then referred to
by that checksum.

The mechanism that Git uses for this checksumming is called a SHA-1 hash.
This is a 40-character string composed of hexadecimal characters (0–9 and
a–f) and calculated based on the contents of a file or directory structure in
Git. A SHA-1 hash looks something like this:

24b9da6552252987aa493b52f8696cd6d3b00373

Using git, we know we can experiment without the danger of severely
screwing things up.



67

THE THREE STATES
Git has three main states that your files can reside in: committed, modified,
and staged.The basic Git workflow goes something like this:

1. You modify files in your working directory.
2. You stage the files, adding snapshots of them to your staging area.
3. You do a commit, which takes the files as they are in the staging area

and stores that snapshot permanently to your Git directory.



8

SETTING UP A GIT REPOSITORY
GIT INIT

The git init command initializes a new
Git repository. If you want to place a
project under revision control, this is
the first command you need to learn.

Usage

git init



9

SETTING UP A GIT REPOSITORY
GIT CLONE

The git clone command creates a
copy of an existing Git repository.
Cloning is the most common way for
developers to obtain a working copy
of a central repository.

Usage

git clone repo directory



10

SETTING UP A GIT REPOSITORY
GIT CONFIG

The git config command is a
convenient way to set configuration
options for your Git installation.
You’ll typically only need to use this
immediately after installing Git on a
new development machine.

Usage

git config --global user.name name

git config --global user.email email@toto.net



11

RECORDING SNAPSHOTS
GIT ADD

The git add command moves changes
from the working directory to the
staging area. This gives you the
opportunity to prepare a snapshot
before committing it to the official
history.

Usage

git add file



12

RECORDING SNAPSHOTS
GIT COMMIT

The git commit takes the staged
snapshot and commits it to the
project history. Combined with git
add, this defines the basic workflow
for all Git users.

Usage

git commit -m "message"



13

INSPECTING A GIT REPOSITORY
GIT STATUS

The git status command displays the
state of the working directory and the
staged snapshot. You’ll want to run
this in conjunction with git add and
git commit to see exactly what’s
being included in the next snapshot.

Usage

git status



14

INSPECTING A GIT REPOSITORY
GIT LOG

The git log command lets you explore
the previous revisions of a project. It
provides several formatting options
for displaying committed snapshots.

Usage

git log -n limit



15

SUMMARY


