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Introduction
The volume of heliospheric data obtained today is much larger than what researchers have 
time to study.  The automatic recognition of features and events is needed for reduction to 
concise products, which researchers can then focus on.  This is HELIO's main objective: 
to catalogue events and associate them when they have the same origin.  HELIO will also 
allow the user to run the algorithms which feed the catalogues on their own set of images, 
allowing them to change the parameters of the detection. 

This feature detection report includes the description of some candidate algorithms to be 
included in the HELIO work-flow.  However, the nature of this document is to be a living 
description of the techniques and algorithms used in HELIO, so new methods, algorithms 
and features will be added in revised versions.  As of now, only solar feature detection is 
covered. The addition of heliospheric features is very complex and requires a process of 
selection that it will be done during the next months. 

The document is structured in 3 sections; the first one covers image processing (future 
editions  will  be  refer  to  this  more  generally  as  data  processing)  in  which  a  brief 
description of the techniques used by the automated detection algorithms is presented. The 
next section describes the algorithms that run on solar images to detect features, such as 
coronal holes, filaments, active regions, coronal mass ejections and radio bursts.  Future 
versions of this document will include the last section which will talk about the detection 
of features in other kinds of heliospheric data.  

Image Processing: Basics
The amount of data expected from coming missions (SDO) is overwhelming, so the use of 
automated  processing  techniques  is  a  must.  In  the  following  subsections,  image  pre-
processing and some of the most common techniques for feature recognition are outlined.  
However, for a more insightful view of the methods used, there are many books which 
specialize on this subject.

Image Pre-processing
The procedures presented here normally use calibrated data unless near real-time data is 
required and calibration is not possible, or standard pre-processing the image is modified 
in  such  a  way that  it  is  not  appropriate  for  the  detection  of  the  desired  feature.  The  
calibration is instrument dependant, but in general all digital images follow some similar 
pre-processing steps (such as flat-field correction). Most of the images used now a days 
are taken with CCDs (Charged Coupled Devices, Tompsett et al., 1970) embedded on a 
optical system.

Other pre-processing methods are performed to facilitate the extraction or characterization 
of the feature.  An example of processing for feature extraction is "histogram equalization"  
which consists of increasing the global contrast, spreading out the most frequent intensity 
values  along  the  histogram.   An  example  facilitating  characterization  is  an  image 
transformation which goes from Cartesian to polar or to Lambert projection (equal area 
per pixel).
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Image segmentation
Normally, every image obtained from a CCD contains different regions or objects (real or 
produced by the instrument or the detector, e.g. electronic noise). Solar images present 
many different features which are interesting for solar physicists and may lead to a better 
understanding of how the Sun works. Different digital image processing techniques allow 
to recognize and characterize such features in an image. Image segmentation is one of the 
most popular yet difficult tasks in image processing. Segmentation subdivides an image 
into its constituent regions or objects.

Segmentation is mainly based on image intensity: where it is discontinuous and where it is 
similar. To detect discontinuities, we differentiate those regions where there is a abrupt 
change in intensity, such as edges. To detect regions of similar intensity we must define a 
criterion. Some techniques used to evaluate the criterion are thresholding, region growing, 
region  splitting  and  region  merging.  Below  we  discuss  the  techniques  used  in  the 
algorithms under review. 

Thresholding
Thresholding is the primary technique for segmentation and is used by all of the other 
segmentation techniques.  It first requires the selection of an intensity value, T.  The image 
is  then segmented in two groups, one below and another above the value  T.   In other 
words, for any point (x,y) in the image (f(x,y)) we obtain a segmented image g(x,y) which 
is given by:

g x , y =1 if f  x , y T
0 if f x , y T

This process is called global thresholding when T is a constant applicable over the entire 
image.  In  practice,  this  method  is  not  very  useful  if  there  has  not  been  some  pre-
processing  done  before  to  remove  irregularities  on  the  image  as  noise,  variation  on 
background intensity, etc. If instead of just one value T we are discerning of two or more 
that is known as multiple thresholding. In case T changes over an image, we use the term 
variable thresholding. When T depends on the properties of the pixel in the neighbourhood 
it is known as local or regional, but if it instead depends on the spatial coordinates it is 
called dynamic or adaptive.

The difficulty of this method is in the selection of T, which depends on the problem to be 
solved.  In  the  techniques  reviewed,  some use  a  static  threshold  for  all  of  the  images 
§\ref{AR.TCD}, others use a global threshold, such as 10% of the median of each image 
§\ref{CH.HH} or a global threshold based on local minima of an image partitioned in 
different sizes §\ref{CH.TCD}.

Region-based segmentation
Region-based  segmentation  relies  on  the  spatial  characteristics  of  different  features. 
Different  techniques  fit  in  this  category  of  segmentation;  some  used  here  are  region 
growing and region splitting and merging.

Region growing is a procedure that groups pixels or sub-regions into larger regions based 
on predefined criteria for growth.  Starting with a set of "seed" points, regions are grown 
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by appending neighbouring pixels using the criteria. 
Criteria  such  as intensity  values  are  local  in  nature  and do  not  take  into  account  the 
"history" of region growth. Additional criteria that increase the power of a region-growing 
algorithm utilize  the  concept  of  size,  likeness  between candidate  pixels  and  the  ones 
grouped already, and the shape of the region being grown. The use of these criteria is 
based on the assumption that a model of expected results is at least partially available.
Figure 1 shows with a 8-connected and absolute difference of the intensities between the 
seed and pixel < T.

Figure 1.  Active Region NOAA 10486 seen by MDI and segmented using region growing 
technique.

Region splitting and merging is a partitioning process where the image is successively 
subdivide into smaller and smaller quadrant regions so that, for any new region a set of 
properties  are  searched.  If  the properties  are  not found the quadrant  is  subdivide into 
subquadrants, and so on. It is common that the final partition contains adjacent regions 
with identical properties. This is solved by allowing merging when the properties of the 
union of both have the requirements setted. Figure shows an EIT image segmented with 
this technique which the common property of values subquadrants larger than 2 sigma.

Figure 2. EIT image segmented with region splitting an merging technique where the 
standard deviation is greater than 2 sigma.

Edge-based segmentation 
Edge-based  segmentation  is  based  on  finding those  locations  were  there  is  an  abrupt 
change in intensity. Local  changes can be detected using derivatives, which are easily 
calculated with local differences.  Similarly, second derivatives (also called Laplacian) can 
be calculated.  Local  differences  are  calculated  using a  3x3 running kernel.  There are 
numerous kernels, each one with its advantages and disadvantages, some offering greater 
sensibility  to  certain  directions  than  others.  Some  examples  are:  Roberts,  Sobel,  and 
Prewit.  More advanced techniques, such as Canny or taking the Laplacian of a Gaussian, 
are techniques for extracting regions which take into account factors such as image noise 
and the nature of edges themselves.

Segmentation using Morphological Watershed 
The concept of watersheds is based on visualizing an image in three dimensions.  Any 
local minimum can be thought of as the point to which water falling on the surrounding 
region drains.  The boundaries of watersheds lie on the tops of ridges.  The watershed 
operator labels each watershed region with an unique index and sets the boundaries to 
zero.

Fuzzy clustering segmentation 
Fuzzy logic and fuzzy set theory \citep{fuzzy 65} is able to simultaneously represent and 
manage imprecise and uncertain knowledge.  In fuzzy set theory, a fuzzy measure is a 
representation of uncertainty, giving for each event to be analysed a coefficient in [0,1] 
assessing the degree of certitude for this event.  So, strictly speaking, fuzzy clustering is 
not a segmentation theory.  But once we have the coefficient for each pixel in each event, 
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the segmentation is just a simple task of choosing the pixels with the largest coefficients 
for each category.

Application to Solar images 
HELIO will provide two frameworks, one will run a set of features detection algorithms to 
feed  a  knowledge  database  and  the  other  will  make  the  algorithms  available  to  the 
community for incorporation in work-flows, allowing parameters within the algorithms to 
be altered, such as thresholds, features sizes, etc.

In  the  following  section,  the  algorithms  selected  for  HELIO are  described.  In  future 
versions of this report, new methods will be added together with modifications that will be 
made on the original codes in order to adapt them to HELIO.  There will also be methods 
related to the detection of features in the heliosphere.

Coronal holes 
Coronal holes (CHs) are low density regions in the solar corona that have less ultraviolet 
and  X-ray  emission  than  quiet-sun  and  ARs.  The  magnetic  field  within  the  regions 
characterized  are  mostly  unipolar  (open  magnetic  field  lines)  that  extend  beyond  the 
corona into the interplanetary medium and give rise  to  high-speed solar wind streams 
(Altschuler et al., 1972).  Due to their properties, they are an important factor in producing 
recurring  magnetic  disturbances  at  Earth  on  time  scales  of  days  to  months.

CHs can be observed in EUV and X-Rays from rocket telescopes or spacecraft as well as 
in He I 10830 chormospheric line from the ground-base telescopes.  Their appearance is 
dark on the corona whereas, these regions, appear bright on the chromosphere.  Their uni-
polarity  nature  usually  have  helped  to  confirm  their  detection  through  the  use  of 
magnetograms.

The possibility of ground-base observations has made possible to manually catalogued the 
CHs since 1974 from Kitt Peak Vacuum Telescope.  Trying to automatize this task various 
teams have become with different approaches depending of the instruments used.  Most of 
them are based on threshold segmentation, however it is not clear which criteria is used by 
some of them for the threshold selection.  Four algorithms are shown below, the first uses 
195  A Extreme  ultraviolet  images  from SoHO,  whereas  the  second  detect  CHs from 
ground based observations.  The last two uses more than one dataset for the segmentation.

Krista and Gallagher (2009) method provides a CH identification which it also compares 
the CH properties with in-situ measurements of the solar wind at ~1AU.  Their algorithm 
can be used as a space weather forecast tool to predict the fast solar wind streams with 
different  propagation  models  (Parker,  1958).

The CH identification aspect of their code has been tested with 195 A images from the 
Extreme Utraviolet Imager Telescope (EIT/SoHO), the Extreme Ultraviolet Imager on the 
Solar Terrestrial Relations Observatory (EUVI-SECCHI/STEREO) and on full-disk Ti-
poly images from the  X-Ray telescope (XRT/Hinode), with a good agreement with the 
high-speed solar  wind in-situ measurements  from the  Advanced Composition Explorer 
(ACE) and Plasma and Suprathermal ion Composition instrument (PLASTIC/STEREO). 

The threshold detection is the key point of this method.  Intensity histograms of a solar 
EUV  image  gives  a  multimodal  distribution  where  each  frequency  distribution 
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corresponds to a feature in the Sun, i.e. low intensity regions (LIRs), quiet sun (QS) and 
ARs.  The CH boundary corresponds to the location of a local minimum between the LIRs 
and  QS  distribution.  As  Figure  3  shows,  that  minimum  can  be  enhanced  using  a 
partitioning operation, and by doing so the solar image and local histograms obtained have 
a more defined minima which aids in the determination of the threshold desired.   The sub-
images used are 1/2, 1/3, 1/4 and 1/5 of the original Lambert equal-area projected image. 
Each sub-image size steps across the image and obtains local intensity histograms from 
overlapping  sub-images.  The  threshold  minima  are  defined  as  local  minima  that  are 
located  within  30-70%  of  the  QS  intensity  and  are  wider  than  6  digital  numbers.

Since this method depends on the QS intensity, it is reliable at any point in the solar cycle, 
regardless of the change in the overall intensity.  However, the CH boundaries acquired 
during solar maxima are less accurate due to bright coronal loops intercepting the line-of-
sight and obscuring parts of the CHs boundaries.

Figure 3. Visualization of the partitioned to extract the proper threshold used by Krista and 
Gallagher's code.  Original 195 EIT/SoHO image (top-left) is transformed to an Lambert equal 
area projection (top-right).  The image is divided in sub-images and a optimal value is obtained 

from the histograms of each partition.  The three middle rows show the sub-images and their 
histograms of the frames outlined on the Lambert projection.  The number of occurrence of the 
optimal thresholds found is shown on the bottom left, and the last image shows the contour with 

the most frequent threshold. 

19/2/10 16:12 9



HELIO Release Strategy
Draft

Once the EUV -or X-ray- image has been segmented into LIR and non-LIR, the next step 
is  to  determine whether  they are  CHs or  filaments.  Filaments  are  thin and elongated 
structures that have a bi-polar distribution of polarities, whereas CHs show a dominant 
polarity.  The polarity properties of the LIRs are easily extracted from a magnetogram 
using  the  segmented  mask.  The  skewness  of  the  field  strength  distributions  of  the 
different regions provide a numeric value of how bi-polar the regions are (i.e. a filament 
will have a value close to 0 and a CH will be skewed towards the positive or negative 
side).  Other methods also use polarity information of the regions detected to distinguish 
CHs  from  other  LIRs,  as  for  example  Henney  &  Harvey  algorithm.

Henney  &  Harvey  (2005) developed  an  algorithm  motivated  by  the  conclusion  of 
operations of the KPVT in 2003 and the start synoptic observations by the SOLIS Vector  
SpectroMagnetograph (VSM) helium spectroheliograms and photospheric magnetograms.

Their detection uses two-day average he I 10830 spectroheliogram and two-day average 
photospheric magnetogram weighted by a expression involving their time difference.  A 
mask  is  created  with  those  values  above  1/10  the  median  of  positive  values.  A 
morphological closing operation using a square kernel function as the shape operator is 
applied to fill the gaps and connects nearby regions.  For physical reasons (Harvey and 
Recely,  2002)  all  those  areas  smaller  than  certain  size  (two  supergranules)  are 
removed.consecutive  observations  in  He I  and  two magnetograms.  The  mask is  then 
multiplied by a very large value and fill the correspondent pixels on the first segmented 
image,  the smoothing of the resultant  fills  small  gaps and holes.  This is  follow by a 
morphological opening operation  which removes small features while preserves the size 
and  shape  of  small  regions  obtaining  the  final  mask  of  CHs  candidates.

The magnetic field of each candidate region is extracted from the magnetograms and their 
porcentage of unipolarity examinated.  Those with a value below a variable threshold are 
deprecated.  The variable threshold relative to latitude and central meridian distance was 
obtained  from a  study  of  11241 hand-drawn CHs done in  KPVT from data  observed 
between  1992  and  2003.

There has not been tested the two algorithms shown here together.  However, both obtain 
satisfied result when compared with other sources.  Krista and Gallagher have compared 
their fast solar wind predictions with the observed values obtaining a positive correlation 
between the observation speed and the CHs area.  On the other hand Henney and Harvey 
compared their results with the hand-drawn ones obtaining just an area 3% smaller. 

 Scholl  &  Habbal  (2008)  developed  a  technique  that  detect  and  classify  CHs  and 
filaments  from EUV and Magnetogram observations.  They compared the results  from 
three different EUV wavelengths (171,195 and 304 A) with EGSO filament catalogue and 
He I 10830 A CH database from Kitt Peak. For the purpose of comparison they run the 
code following the availability of the data in this order between 1997 and 2003:  Kitt 
Peak, SFC-EGSO (filaments database), EIT and MDI.

The data preparation and processing works as explained below:

• Co-rotate MDI, Kitt Peak maps and SFC contours when needed. 

• EIT:  Normalization,  noise  cleaning,  contrast  enhancement  (histogram 
equalization),  image-segmentation (combination of region-based and edge-based 
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methods),  region extraction, cleanup (remove small features). These steps differ 
between 304 and 171 or 195 A. 

• Comparison with magnetograms: skewed distribution and mean magnetic flux.

• Classification. 

They found, in general, better agreement during the declining phase of solar activity.  But 
they find a great agreement between the different wavelenghts for features lying close to 
Sun center, when line-of-sight effects are minimal.

SPoCA (Barra et al., 2005, 2008, 2009), the Spatial Possibilistic Clustering Algorithm is a 
a  multi-channel  unsupervised  spatially-constrained  fuzzy  clustering  method  that 
automatically segments solar EUV images into regions of interest, which in this case are, 
at least, CHs, active regions and quiet sun.  However, in the way that this code works new 
features can be detected, as coronal bright points, and new wavelengths can be added.

The algorithm try to find through an iterative minimization equation the cluster centers of 
the features being detected.  Then each pixel will obtain an amount of belonging to one or 
other feature group, as a probabilistic value, depending on itself, its closer neighbours and 
the whole image.  The improvements done in the last version include a radial line-of-sight 
equalization,  the  inclusion  of  an  automatic  evaluation  of  the  segmentation  with  a 
sursegmentation  method  (i.e.  segmenting  the  image  into  a  number  of  classes  strictly 
superior to the intuitively expected number of classes in the image, and then finding and 
aggregation  criterion  of  the  resulting  partition  that  shows  the  relevant  classes),  the 
smoothing of the edges using a morphological opening with a circular isotropic element of 
size one and finally the CHs and filaments are differentiated using an H-alpha image from 
a ground-based telescope.  This last improvement is not good for real-time data analysis.

Comparison

Photosphere 
(magnetic)

Chromosphere Corona Heliosphere

Krista & Gallagher MDI/SoHO
EIT/SoHO,SECCH
I/STEREO, 
XRT/Hinode

ACE

Henney & Harvey SOLIS/VSM
SOLIS/VSM  HE  I 
10830

Scholl & Habbal MDI/SoHO EIT/SoHO

SPoCa
Halpha(Kanzelhoeh
e)

EIT/SoHO
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Filaments 
Filaments are large regions of very dense and cool plasma held in place by magnetic  
fields.  They usually appear long, dark, and thin when seen against the solar disk, and at 
the  limb  appear  as  bright  fuzzy  arches,  called  prominences.  As  previously  stated, 
filaments appear bipolar in magnetograms, which allows them to be differentiated from 
CHs.  Even though filaments are observed in the corona, H-alpha (chromospheric) images 
provide  the  best  outline  of  the  feature. 

H-alpha  observations  are  made from ground-base telescopes (Hinode contained an H-
alpha filter, but it suffered problems during launch and its use was not recommended).  
The images thus require pre-processing to correct for the constantly varying observing 
conditions (mostly caused by atmospheric seeing).  Some of the corrections done are the 
same for all ground-based observations but others are instrument dependant.  We refer the 
reader  to  the  documentation  of  each  algorithm  for  further  details.

It is well  established that the sudden disappearance (or eruption) of filaments from an 
image is usually associated with CMEs.  The characterization of filaments can provide 
information to predict the orientation of the magnetic field associated with CMEs and the 
probability  of  a  CME  hitting  the  Earth.

Bernasconi  et  al.  (2005) produced a  very  complete  automated filament  detection and 
characterization algorithm which is based on a code written by Shih and Kowalski (2003). 
They used full-disk H-alpha images observed from Big Bear Solar Observatory (BBSO), 
as the one shown on the left panel of figure 4.  The filament detection is performed by 
creating a mask using a threshold segmentation and an advanced morphological filtering 
operation.  The first step is to remove the sunspots (their cores are usually darker than 
filaments).  All  pixels  below a certain  threshold  (determined manually)  are  marked as 
sunspot seeds. Using a region-growing morphological operation, the seeds are grown by 
adding adjacent pixels until the number of pixels exceeds a value higher than the threshold 
level for filaments.  All the regions detected, with an area smaller than 2000 pixels, are set 
to  a  larger  value  than  the  threshold  level  for  filaments.

A binary mask is created by setting every pixel to unity, below the filament detection 
threshold and the rest to zero.  It requires a filtering operation to extract only those regions 
with elongated shapes and to remove unwanted regions.  These shapes can be isolated 
from other  by  separately  applying  to  the  filament  mask  eight  opening  morphological 
operations with the eight linear structuring elements shown in left-top panel of figure 4 
(Soille and Talbot, 2001). Pixels that survive at least two of such opening operations are 
used  as  seeds  for  a  region-growing  morphological  filter  to  expand  them  until  they 
surpasses a second filament threshold.  Regions smaller than 300 pixels are deprecated.

Once  the  mask  have  been  created  each  separate  cluster  is  numbered  and  the 
characterization  of  the  detection  proceed.  In  this  process  the:  position,  length,  area, 
average tilt of axis with respect to the Sun's equator and chirality of the magnetic flux rope 
are  extracted.  The  determination  of  the  Filament's  spine  is  done  using  a  multi-step 
iterative technique as it is shown on the bottom left panel of Figure 4.  The first iteration 
starts by determining the location of the two spine ends points. Then by adding the middle 
point and through an optimization process it gets another vertex.  The iteration of those 
steps until each segment is smaller than certain length gives an array with the coordinates 
of the filament's spine.
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Figure 4. Full disk H-alpha image where the filaments can be seen as long dark and thin  
structures. On the right side; top: the eight directional linear structuring elements used by  

advanced morphological filter.  On the bottom the first step and final result of the  
algorithm that determine the filament's spine.  The labels refer to the order in which the  

points are found. 

The filament's barbs is a important characteristic to take into account because it gives  
information of the chirality of the flux rope in which the filament is embedded.  The barbs 
are detected as the farthest boundary points to the spine, which are longer than 3 pixels 
and that the ratio between the barb's height and the width in its base is greater than 0.3.  
Depending of the angle of each barb respective to the closest spine segment determine 
them as a bear-right or  a bear-left direction.  The difference between the number of left 
and  right  bears  establish  the  chirality  of  the  filament  as  left  or  right-handed.

The technique  used  for  others  automatic  filament  detection  differ  mainly  on  how the 
threshold is selected.  On the algorithm used in EGSO (Fuller et al., 2005) the lower and 
upper threshold used to find the seeds to create a mask with the segmentation of the image 
is calculated according to local statistics after divide the image into smaller areas.  To 
obtain  the  skeleton  of  the  filaments  this  code  use  the  thinning  process  based  on  the 
HitOrMiss transorm (Sonka et  al.,  1999),  removing the branches  of the skeleton after 
computing  iteratively  the  end  points.

N. Fuller et  al.  (2005) developed a  code to  automatically  detect  filaments on Halpha 
observations in the frame of the EGSO Solar Feature catalogue.  This method is based on 
region growing.

Starting from a standardized solar image the following steps are applied:

1. Optional cleaning
   - Remove possible dark lines on image: the method combines global thresholding and 
morphological thinning to detect dust lines.
   - Flattening: remove large variation in background intensity (center to limb attenuation 
already removed with standardization process):
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       a- Apply median filtering on a smaller scale image
     b- filtered image is thresholded and highest/lowest values are replaced by the median 
filtered image values 
     c- second median filtering of the image calculated above (i.e. reducing the effect of 
bright regions and dark filaments)
     d- Filtered image is scaled back to the original size and subtracted from original image, 
mean intensity is restored
   - Sharpen the image using High-boost filtering (subtract the second derivative of image: 
laplacian)g(x,y) = f(x,y) –Ñ²f(x,y)

2. Find the region seeds 
   - A windowed threshold is applied. Statistics of pixels values are calculated within the 
window, discarding the highest and lowest ones to get an estimation of the quiet sun level. 
Then the threshold which is applied to get the seed pixels is calculated.

3. Region growing process
  - A bounding rectangle is computed for each seed.
  - Within the rectangle, statistics of pixels are determined
  - Upon intensity criteria the pixels are appended to the region or not.
  - Some limits are set like region maximum and minimum size, seed minimum size, seed 
distance to the limb etc.

The final result is a segmented image with pixel corresponding to filaments set to 1 and 
others to 0. Some more morphological operations
are then applied to group close regions and to describe the detected features (contour, 
skeleton, area, length etc.)

Comparison of codes 
The technique  used  for  others  automatic  filament  detection  differ  mainly  on  how the 
threshold is selected. On the algorithm used in EGSO the lower and upper threshold used 
to  find  the  seeds  to  create  a  mask  with  the  segmentation  of  the  image  is  calculated 
according to local statistics after divide the image in smaller square windows.  To obtain 
the skeleton of the filaments this code use the thinning process based on the HitOrMiss 
transform [*ref* *Sonka,Hlavac,  Boyle 1999*], removing the branches of the skeleton 
after that computing iteratively the end points.

Active regions

Active  regions  (ARs),  or  "sunspots"  as  they  are  called  when  they  are  seen  in  the 
photosphere, are high concentrations of magnetic flux emerging over the solar surface,  
which  are  a  direct  proxy  of  solar  activity.  They  are  clearly  identified  in  different 
wavelengths: in the corona they appear like high concentrations of EUV emission where 
magnetic loops can be sometimes be distinguished, whereas they appear as sunspots in the 
lower atmospheric layers (normally with a dark inner umbra and surrounding penumbra).  
Figure  5  shows how different  an  AR (NOAA 10708)  appears  when seen  at  different 
temperatures  compared  to  the  magnetic  field  in  the  photosphere.  Due  to  differences 
between how this feature appears in different wavelengths, there is some controversy over 
the definition of AR.  Throughout this document, an AR will be defined as a concentration 
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of magnetic flux seen in the photosphere.  However, it should be noted that NOAA only 
designates numbers to those which have a white light signature (ie. Sunspot).i 

Figure 5.  These six images show NOAA AR 10708 as is seen on, from left to right and top  
to bottom: continuum (photosphere) and magnetogram from MDI, Halpha 

(chromosphere) from Big Bear Solar Observatory and EIT 304 (higher chromosphere),  
171 (corona) and 195 (corona) from SoHO.  Extracted from http://solarmonitor.org 

As can  be  seen  from Figure  5,  the  same  technique  cannot  be  used  for  every  image. 
However, for cataloguing purposes there is no need to detect the feature in all of them.  
There are different algorithms to detect features in each layer of the atmosphere.  The one 
explained  here  uses  magnetogram  images,  which  is  the  one  from  which  the  most 
information can be extracted.  From the space weather point of view, the detection of ARs 
are very useful because they are the source of other events -  flares and coronal mass 
ejections  (CMEs)  -  that  can  produce  effects  on  Earth  and  other  planets  (and  the 
instruments  and  astronauts  orbiting  them).  Currently,  region-based  flare  (and  CME) 
forecasting requires determining the magnetic properties of the AR in question and its  
surroundings (Conlon et al., 2009; Zhang et al., 2009 and therein)
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The  SolarMonitor  Active  Region  Tracker  (SMART;  Higgins  et  al.,  2010)  is  a  newly 
developed algorithm used for detecting, tracking and cataloguing emerging active regions 
throughout their evolution and decay.  It uses the SoHO Michelson Doppler Interferometer 
(MDI)  full-disk line-of-sight  magnetograms to  extract  magnetic  properties such as the 
region size, total flux, flux imbalance, flux emergence rate,  Scrhijver's R-value, R* and 
Falconer's measurement of non-potentiality.

SMART can  be  separated  in  four  phases,  first  the  magnetograms are  segmented  into 
individual feature masks, a characterization algorithm is then run on each extracted region 
to  determine  its  properties.  The  properties  are  classified  and finally  catalogued (with 
tracking  information  included).  Here  we  are  interested  only  in  the  segmentation 
technique, so we refer the reader to the SMART documentation for further information on 
the other aspects of the algorithm.

Magnetograms, after  calibration,  contain values in gauss,  so there is  negative (usually 
represented  as  black)  and  positive  (as  white)  values.  SMART uses  two  consecutive 
magnetograms (denoted as Bt and Bt-dt   to remove transient features and to extract time-
dependent properties later.

The  first  steps,  shown on Figure 6,  are:  smooth  the images  with a  10x10 pixels2 2D 
Gaussian with a full-width at  half maximum of 5 pixels  to remove ephemeral regions 
which have scales on the order of 10 Mm (7 MDI pixels); remove the background using a 
static threshold of ~70 Gii; line-of-sight component of the field is corrected using a cosine 
correction  factor.  At  this  stage,  Bt-dt   is  differentially  rotated  to  time,  t.

Binary masks, Mt   and Mt-dt  ,  are created from the corrected magnetograms, setting all 
pixes above the threshold to one.  Features of less than 50 pixels and those which are not 
present in both masks are removed after dilating each mask by 10 pixels and subtracting 
them, which results in a transient features mask.  This mask is removed from the un-grown 
Mt,  which is then dilated by 10 pixels  and results  in  a mask of  the desired features.  
Individual contiguous features are indexed by assigning ascending integer values in order 
of decreasing feature size. The segmentation output is an indexed grown mask (IGMt). 
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Figure 6.  SMART's steps.  First image, top-left, show the magnetogram of an AR.  Next  
images on the left show the smoothing and threshold cut of 70 G respectively.  Next two 

rows show the masks from that image and the one obtained 96 minutes before, the  
growing step and their difference.  The last row shows the first mask after subtracting the  

difference and after dilation, which is the final segmentation mask used to plot the  
contours on the last image.

Each feature is then characterized individually by their physical values obtained from the 
image  resulting  from  the  multiplication  of  the  IGMt by  Bt  .

SMART algorithm is unique among automated AR extraction algorithms in that it allows 
the  temporal  analysis  of  magnetic  properties  from  birth  ant  through  multiple  solar 
rotations.  It  is  planned  for  further  versions  of  SMART to  incorporate  a  flare  event 
probability.  This will be done in part by adapting the McAteer et al. (2009) and Conlon et 
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al. (2009) multifractal  technique to the SMART feature characterization.  Conlon et al. 
(2009) propose a 2D wavelet transform modulus maxima method (WTMM) to study the 
multifractal properties of AR magnetic fields.  The segmentation of the AR is obtained by 
using WTMM, which applying it to the AR provides an adaptive space-scale partition of 
the fractal distribution.  It is shown in their work that the study of the fractal nature of an 
AR can be used as a flare forecasting tool.

Other  algorithms  are  interested  in  the  classification  of  sunspots  as  it  has  been  done 
manually  by  human  observers.  That  is  the  case  of  the  code  written  by  (Colak  and 
Qahwaji, 2008) where, using white light images and magnetograms from MDI/SoHO and 
neural  network  techniques,  the  sunspots  are  detected  and  classified  automatically 
according to the McIntosh classification system.  This system has the advantage that it 
compares well the NOAA AR identification scheme.

Also,  two  codes  presented  in  Zharkova  et  al.  (2005) were  developed  for  EGSO  at 
Meudon observatory to study ARs by comparing Ca II k1 emission line ground-based 
images  and  MDI  white-light  images  with  MDI  magnetograms,  obtaining  information 
about  the  sunspots  properties,  i.e.  size  of  the  umbra  and  penumbra  and  the  intrinsic 
magnetic properties.

The code which works with white-light images from MDI/SoHO and Ca II K1 line images 
from a ground-based telescope at Meudon Observatory using edge detection techniques.

Once  the  data  is  preprocessed  (limb  fitting,  removal  of  geometrical  distortion,  centre 
position and size standardisation) the detection starts. The segmentation is obtained using 
the Sobel edge detection technique on the photospheric images after a Gaussian smoothing 
was applied.  The use of a global threshold segments the edges obtained.  The existing 
gaps  are  filled  with  the  close  and  watershed  morphological  operators  and  they  are 
preceded by new segmentation based on dynamic thresholding  (constant for the MDI 
data, variable for ground-based images due to the Earth's atmosphere unstable conditions) 
to extract the umbra and penumbra parts of the sunspots. 

These two codes are complementary, whereas one extracts the magnetic field properties of 
the ARs, the other extracts the properties of the sunspots.  Not all the ARs, as defined by 
SMART, produce the photospheric signature seen on the continuum as sunspots, therefore 
studying the output of both codes will help to the understanding of the solar magnetic field  
and its production. 

Comparison of their results 

Other  algorithm  are  interested  on  the  classification  of  sunspots  as  it  has  been  done 
manually  by  human observers.  That  is  the case  of  the code done by  (ref  Colak  and 
Qahwaji) where using white light images and magnetograms from MDI/SoHO and neural 
network techniques the sunspots are detected and classified automatically according to the 
McIntosh classification system.  This system has the advantage that it compares well the 
NOAA AR identification scheme.  Also, two codes were developed for EGSO at Meudon 
observatory to study the ARs comparing respectively Ca II k1 line ground-base images 
and  MDI  white-light  with  MDI  magnetograms.  Those  obtained  information  of  the 
characteristics  of  the  sunspots,  i.e.  size  of  the  umbra  and penumbra  and the  intrinsic 
magnetic properties.  (Falconer's???)
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CME's 
Coronal Mass Ejections are large-scale eruptions of plasma and magnetic field with high 
energies.  The particles expelled in a CME travel from the Sun at velocities of hundreds up 
to several thousand kilometres per second and they have consequences on space-borne 
instruments and on the planets, auroras are an example seen on Earth and other magnetic-
field-protected planets as Saturn (Prangé et al., 2004).  Their  diffuse and transient nature 
makes them a difficult object to automatically identify.  CMEs are observed with the help 
of coronagraphs.  A coronograph is a telescope attachment designed to block out the solar 
disk allowing to see the surrounded corona (which is  fainter than the disk).  A natural 
example of a coronagraph happen during the solar eclipses, when the moon cover the sun.  
On space, SoHO and STEREO are equipped with them.  Large Angle and Spectrometric  
Coronagraphs (LASCO) C2 and C3 are onboard SoHO and STEREO is equipped with 
Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) which contains 
two coronographs  namely COR1 and COR2.  SECHHI also counts with a wide-angle 
visible-light imaging system called H1.

There is available a few catalogues obtained from those instruments mantained for their 
main teams:  CDAW Catalog and  NRL LASCO CME List from SoHO and COR1 CME 
Catalog and  HI1 Event  List from STEREO.  Those  catalogues  provide  information of 
when  a  CME happen  and  its  properties,  including  the  position  angle,  angular  width, 
height, velocity and acceleration.  However, since they are human-based process they are 
time  consuming  and  the  parameters  measured  are  subject  to  human  bias.  Therefore 
automation  of  their  detection  is  a  must.  To  date  several  automated  CME  detection 
algorithms have been proposed to used with LASCO C2 data and extensible to COR1. The 
Computer Aided CME Tracking (CACTus) was the first one of its kind developed at the 
Royal Observatory of Belgium (Berghmans et al., 2002), its development was followed by 
the  Solar  Eruptive  Event  Detection  System (SEEDS;  Olmedo  et  al.,  2008)  from the 
Geroge Mason University and Automatic Recognition of Transient Events and Marseille 
Inventory from Synoptic maps (ARTEMIS; Boursier et al., 2009) from the LASCO team 
at Laboratoire d'Astrophysique de Marseille.  All those automated relies on the uses of 
more than one frame to detect a CME; Byrne et al., (2009) from Trinity College Dublin 
propose a method to overcome this problem for real-time detection.
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Figure 7.  Example of the same CME seen by the different algorithms presented here. Top-
left image show a single frame from LASCO C2/SoHO with a dashed line showing the  

radio shown in Artemis figure and with a solid line the angle at where CACTus method is  
shown.  ARTEMIS and CACTus visualization at the radius and position angle told before  
agains time.  Second row shows Byrne et al. detection with vector representation of the  
multiscale detection and SEEDs representation of the running difference images at the  

same time. 

The  preprocessed  of  the  images  followed  for  these  groups  differ  from  the  standard 
methods proposed by the instrument teams.  This is due because the standard reduction is 
not optimized to detect CMEs (background stars, planets and comets appearance are usual 
on  those  images.  It  is  worth  to  mention  that  LASCO  is  the  most  successful  comet 
discoverer in history, having found over one thousand six-hundred comets in over thirteen 
years of operationiii.  The images are exposure time normalized, corrected from cosmic 
rays, stars or planets by different methods and transformed to their preferred coordinate 
system. Figure 7 shows an example of the different transformation used by the methods 
exposed.  CACTus  transform  each  coronographic  image  from  its  native  Cartesian 
coordinate system to a polar coordinate system [r,position angle], where r is the radial 
distance  from the  centre  of  the  Sun and the  position  angle  is  the  angle  from certain 
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reference point (in here the position angle is measured anticlockwise from the ecliptic).  
The successive transformed images are stacked to the first one constructing a [r,position 
angle,t]  datacube,  which  is  iteratively  processed  to  estimate  the  background  and  to 
remove the dust corona and rotating streamers. [r,t] slices are extracted from the cleaned 
datacube to proceed with the CMEs detection.  ARTEMIS creates synoptic maps which 
consists on the generation of [position angle,t] images, being complementary to CACTus 
approach.  Finally  SEEDS  works  in  polar  coordinates  [r,position  angle]  after  the 
construction of running-difference image of two consecutive images.  Byrne et al. method 
no produce any coordinate transformation previously to the CME detection.

It is easily seen on the Figure 6 that the same CME present different signatures on each of 
the transformations, therefore the techniques for the detection are different.  CMEs appear 
as  inclined  lines  on  CACTus,  which  relies  on  the  Hough  transform  for  it  detection, 
whereas on ARTEMMIS the CMEs appear with different morphologies which they have 
classified in 4 different types:  undistorted vertical streaks without temporal dispersion, 
quasi-symmetric arc shapes, arc shapes followed by a second structure with a dark zone in 
between and a last type  which groups events of unclear signature.  ARTEMIS detection 
involves  three  main  steps:  filtering,  segmentation  and  merging  with  high-level 
knowledge.  The filtering is done line by line removing the background with a median 
filter with a 7 pixels window.  The segmentation process is done by a simple thresholding 
process with a value selected by *experience*, followed by the application of the Line 
Adjacency  Graph  (LAG;  Pavlidis,  1986)  which:  removes  small  artificial  "holes"  by 
performing  a  morphological  closure  operation,  identify  regions  of  interest  (ROIs), 
compute their geometrical and their statistical parameters and remove those smaller than 
certain size.  Finally each ROIs is associated to the same CME if satisfy simultaneously 
three empirically-determined conditions which form the High-Level knowledge; they are: 
the difference between the x-coordinates and y-coordinates of their center differs by less 
than certain amount, and the ration of the radiances at the center of both ROIs on the 
original synoptic map ranges between given values.

A CME  on  SEEDs  appear  as  a  bright  leading-edge  enhancement  (positive  values) 
followed by a dark area deficient in brightness (negative values), the background appear 
as grey indicating zero-change.  The quasi-static features such as coronal streamers have 
been removed by the  running-difference  process.  The  extraction of  the  CME is  done 
using a threshold-segmentation technique and region-growing algorithm.  The positives 
values of the image are projected to one dimension along the angular axis, obtaining the 
angular intensity profile.  The threshold value is obtained from such profile as a number of 
times the standard deviation over the mean of the profile. The number of times of the 
standard deviation is chosen by experimental methods and its value is often between two 
and four.  This gives the angle of the core, which it is made to grow to cover the whole 
CME, the region growing connects those values between the maxima of the core-angle 
and a second threshold calculated as the previous time but just over the values outside the 
core-angle.

Byrne et al. method, an application of Young and Gallagher (2008), is not automatized yet 
but  it  presents  a  multiscale  method  for  CME  detection  using  a  single  image.  The 
algorithm create  a  mesh  of  vector  arrows  from the  magnitude  and angle  information 
obtained from the Canny edge detection.  A threshold is specified to the angle information 
in order to chain pixels along maxima, and the CME front is fitted with an ellipse.
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The next step is the characterization of the CMEs' kinematics.  It is not much connected 
with image analysis  as  it  is  with the application of  a  model.  However,  the nature of 
Hough  transform  used  by  CACTus  constrains  the  CMEs  to  have  constant  velocity.  
Boursier  et  al.  (2009)  showed a  comparison  of  the  catalogues  produced by  CACTus, 
SEEDs and ARTEMIS together with the man-made CDAW showing that the automated 
catalogues  tend  to  report  more  than twice as  many CMEs as  are  identified by visual 
detection, but the major interest on the development of those automated algorithms is to 
produce not human biased results and be able to produce robust statistical analysis.

Radio Bursts
Automatic detection of radio type events or features is not an easy task. The goal of this 
short document is to give an overview of what has been done so far, of possible data 
sources and of the main difficulties that we might face. This first draft is not a complete 
review of the knowledge in this field and should be improve in the future.

Reminders
Let’s  remind here  that  ground base  radio  observations  are  limited  by  the  ionospheric 
absorption. Below a limit of 10-15 MHz radio observations are performed from space. 
Waves instruments observe below 14MHz, also called the decametric-hectometric (D-H) 
domain.  This  means that  observations  from space  are  the main source of  information 
concerning interplanetary radio events. The higher is the frequency, the closer to the Sun 
you can observe. The BIRS observatory which covers the range 5MHz-62.5 Mhz is the 
only ground base radio observatory at such low frequency (only when the ionospheric 
absorption is low). It’s also important to note that ground observatories allow a higher 
observation cadence (<1s) but are limited to about 7 or 8 hours a day.

Radio type events
We only investigate here type II and III radio events. Type III bursts are usually associated 
with solar flares and are  produced by electron beams travelling  along the coronal  and 
interplanetary magnetic field lines. Several typeIII can occur in a very short time before 
the flare.
Here is an example taken from secchiRH tool (combined observations from Waves, DAM 
and Artemis):
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Interplanetary type II bursts (or kilometric type II) are usually  the signature of the bow 
shock of fast CME’s. The origin of metric type II burst, which might not be connected to 
the interplanetary counterpart, remains unclear but maybe associated with a fast CME or a 
blast wave. Both type II show a slow drift on time-frequency plots. Below is an example 
of a metric type II  (combined observation of Culgoora,  BIRS and Waves data)  which 
disappear before reaching the interplanetary space. On the left: an interplanetary type II 
driven by an ICME from Waves observations (see the different time scales)

Side informations:
- There is not always a type III before a type II
- A type II can precede a type III (the type II leading to a non flaring type III)
- A type III can originate from Jupiter (Volcanic activity on Io)

“Radio active” regions
Nancay RH (164 MHz) and Nobeyama RH (17GHz)

 

A software has been developed by C. Renie from Paris observatory to extract informations 
from the NRH synthetized images. An elliptic gaussian is fitted on the brightest source in 
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order  to  get  a  location and,  by subtracting this  source,  extract  informations  about  the 
secondary sources. Analysis of these images is not straightforward, on need to distinguish 
noise  storms from flare  contribution.  See  below comments  from Pr  Shibasaki  for  the 
NoRH images, which observes at higher frequencies (17GHz, 34 GHz, 10 images/sec). 
The Nancay Radioheliograph provides 2-D images of the sun at 5 frequencies (between 
150 and 450 Mhz) at a cadence of 8 images/second.

Automatic detection of type II and III

Automated detection of Type II Solar Radio Bursts in Radiospectrograms
T. Dudok de Wit, M. Tamaazousti

They developed a method based on the Hough transform to detect interplanetary Type II 
automatically from wind/waves data.The method still needs some optimizations and has 
not been applied to a large set of data to determine its efficiency. No publications, but 
TDdW agrees to provide informations.

Automated  detection  of  solar  radio  burst  and  plasma  structure  observed  with 
Wind/Waves
N.C. Parikh, M.L. Rilee

In the summary:
"Multi-spacecraft  space  science  missions  such  as  CLUSTER  (launch  2000)  and 
Magnetospheric Multi Scale (launch 2008) carry radio receivers that operate below the  
ionospheric limit of 10-15 MHZ down to a few KHz and produce large amounts of in situ  
and remote observations of a great vaiety of Solar System phenomena.(...) In this paper 
we analyze dynamic spectra from the thermal noise receiver of the Waves experiment on 
board the Wind spacecraft to determine contours of the local plasma emission and typeII  
and III solar radio  bursts".
No access to full article yet.

Automatic  recognition  of  type  III  solar  radio  bursts:automated  radio  burst 
identification system method and first observations
C.V. Lobzin, I. H. Cairns, P.A. Robinson, G. Steward, G. Patterson

They developed a method, which seems quite interesting, based on the binarization of the 
dynamic spectra and the radon transform (and eventually smoothing). They claim a 84% 
performance, by comparing their results to the NGDC list of events for 13 days in 2002 
(ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/SPECTRAL/SPEC_NEW.
02). They use data from the Radio Solar Telescope Network (RSTN) and from Culgoora. 
This  is  the  first  step  of  a  more  complex  system  called  ARBIS  (Automated  Burst 
Identification System, see also below) which aims is to provide space weather forecasting 
based on radio spectrograph data.

Automatic  Recognition  Of  Coronal  Type II  Radio  Bursts:  The Automated Radio 
Burst Identification System Method And First Observations. (published 2010 January  
22)
Vasili V. Lobzin, Iver H. Cairns, Peter A. Robinson, Graham Steward and Garth Patterson
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From the  same set  of  observations,  ARBIS2 also  detects  coronal  type  II  events.  The 
method  is  a  bit  more  complex,  with  a  preprocessing  step  involving  filtering  and 
morphological  operations.  But  the  main idea  is  the  same:  using  the  Hough  transform 
(similar to the radon transform) to find straight segments on a binary image. The authors  
seem to mix up coronal and interplanetary type II in the introduction, whereas there is no 
clear evidence that both are linked. 

Automatic  recognition  of  low-frequency  radio  planetary  signals.  Planetary  Radio 
Emissions IV, Austrian Academic Science Press, Vienna, pp. 359–368.
H. de Lassus, Ph. Daigremont, F. Badran, S. Thiria and A. Lecacheux
 
In the summary :
We  address  the  problem  of  autonomous  decision  making  in  classification  of  
radioastronomy spectrograms from spacecraft.  It  is  known that  the  assessment  of  the  
decision process can be divided into acceptation of the classification, instant rejection of  
the current signal classification, or rejection of the entire classifier model. We propose to  
combine prediction and classification with a double architecture of Time Delay Neural 
Network (TDNN) to optimize a decision minimizing the false alarm risk. Results on real  
data from URAP experiment aboard Ulysses spacecraft show that this scheme is tractable 
and effective.
Full article might be retrieved from A. Lecacheux

Japanese experience  from Pr. Shibasaki (Nobeyama)

“We have been using an automatic burst detection method developed during the initial  
operation of NoRH in 1992.  Listed events in "http://solar.nro.nao.ac.jp/norh/html/event/" 
were  detected  automatically  using  this  method.  We  use  correlation  plots  "  
http://solar.nro.nao.ac.jp/norh/html/cor_plot/" for burst detection.  These time series data 
are generated every day after the end of daily observation.  They are averaged visibility  
amplitudes of longer baseline combinations every second.  Visibilities of longer baselines 
are very sensitive to brightenings of compact structures such as radio bursts.  They are 
not much influenced by weather conditions.  By differentiation of these time series, we can  
easily identify the suddend increase of the visibility values.  At this moment, no one is  
working on this software but simply using routinely.   Shimojo san (shimojo@nro.nao.ac.jp) 
has  been  working  on  automatic  detection  of  prominence  eruptions  using  synthesized  
images.  The  results  are  listed  in  "http://solar.nro.nao.ac.jp/norh/html/prominence/".  
Automatic detection of prominences are not robust enough, so it is necessary to delete 
false events by hands.”

Application to Heliospheric data 

It is much more difficult to define some generic method for remote radio data and in-situ 
measurements as techniques used are closely related to the instrument. Each instrument 
has its specific noise and its own set of interferences and then information extraction has 
to deal with that.  As a matter of fact, many such instrument teams have already developed 
their  own data  processing  code.  In  a  forthcoming  update  of  this  document,  we  shall 
provide more information concerning this kind of data. 
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