Projet

Général

Profil

Wiki » Historique » Révision 22

Révision 21 (Damien Gratadour, 18/06/2012 18:49) → Révision 22/29 (Julien Brule, 19/06/2012 10:38)

h1. YOGA wiki 

 !https://dev-lesia.obspm.fr/projets/attachments/download/575/yoga_logo2.png! !https://dev-lesia.obspm.fr/projets/attachments/download/346/yoga_logo_small.jpg! 

 Yoga is a plugin for "Yorick":http://dhmunro.github.com/yorick-doc/ built on top of "NVIDIA's yorick using the NVIDIA CUDA toolkit":http://developer.nvidia.com/category/zone/cuda-zone. C library. It provides brings GPU acceleration from within the Yorick environment to yorick for a number of some selected applications (Fourier transform, matrix operations, random number generation, etc ..). (see below). 

 The links below are intended to help you getting Yoga and using it. Have fun ! 


 Please select a category : 
 * "Install Notes":https://dev-lesia.obspm.fr/projets/projects/yoga/wiki/installNotes  
 * "How to use Yoga efficiently":https://dev-lesia.obspm.fr/projets/projects/yoga/wiki/howTo  
 * "FFT":https://dev-lesia.obspm.fr/projets/projects/yoga/wiki/fftInfos  
 * "Matrix Operations":https://dev-lesia.obspm.fr/projets/projects/yoga/wiki/matrixInfos 
 * "Random number generator":https://dev-lesia.obspm.fr/projets/projects/yoga/wiki/rngInfos 
 * [[Practice YoGA]] 
 * [[YoGA features]] 

 repos @: https://lesia.obspm.fr/repos/yoga/trunk 

 h1. *YOGA_AO* 

 YOGA_AO is an extension to YoGA a Yorick plugin providing efficient tools to simulate a wide range of adaptive optics systems at various scales. General software design has been inspired by "YAO":http://frigaut.github.com/yao/index.html, a simulation tool developed by François Rigaut. 

 Main features include : 
 * on-line multiple layers Kolmogorov turbulence generation at various altitudes 
 * multi-directional raytracing through turbulence 
 * multi-directional Shack-Hartmann (SH) spots computation using either natural or laser guide stars 
 * centroiding on SH spots using various algorithm : center of gravity (COG) , weighted COG, thresholded COG, brightest pixels COG 
 * more to come ... 

 [[Install YoGA_Ao]] 
 [[YoGA_Ao features]] 
 [[Use YoGA_Ao]] 
 [[Model Description]] 
 [[Benchmarks]] 


 !https://dev-lesia.obspm.fr/projets/attachments/download/574/yoga_ao_logo_medium.png!